EXERCICES SUR L'INTÉGRATION GÉNÉRALISÉE À UN INTERVALLE QUELCONQUE

RAPPELS SUR LES INTÉGRALES DÉFINIES

EXERCICE 1:

- 1) Calculer les intégrales suivantes :

- a) $\int_{0}^{1} t e^{-t^{2}} dt$ b) $\int_{1}^{4} \frac{e^{\sqrt{t}}}{\sqrt{t}} dt$ c) $\int_{2}^{e} \frac{\ln(t)}{t} dt$ d) $\int_{0}^{\frac{1}{2}} \frac{dx}{x^{2} 1}$ e) $\int_{0}^{1} \ln(x + 1) dx$
- f) $\int_0^1 \frac{x}{\sqrt{x+1}} \, dx \text{ (on pourra poser } u = \sqrt{x+1} \text{)} \qquad \qquad \text{g) } \int_0^1 \left(x^2 3x\right) e^x dx \qquad \qquad \text{h) } \int_{-5}^2 e^{\left|x-1\right|} dx$
- 2) Soit f définie sur [0; 1] par $f(x) =\begin{cases} x & \text{si } x \in \left]0; \frac{1}{3}\right] \\ -2x + 1 & \text{si } x \in \left[\frac{1}{3}; 1\right] \end{cases}$. Calculer $\int_0^1 f(x) dx$.
- 3) a) Soit f_n la fonction définie sur \mathbb{R}^+ par $f_n\left(x\right) = \sqrt{n^2 + x^n} \left(n \in \mathbb{N}\right)$. Etudier les variations de f_n sur \mathbb{R}^+ en fonction de n.
- b) On considère la suite (u_n) définie par pour tout $n \ge 1$ $u_n = \int_1^{1+\frac{1}{n}} \sqrt{n^2 + x^n} dx$.

Trouver un encadrement de u_n . En déduire que (u_n) est convergente et donner sa limite.

- 4) Soit $f(x) = \int_{x}^{2x} \frac{dt}{\sqrt{t^4 + 1}}$.
- a) Déterminer le domaine de définition de f.
- b) Etudier la continuité et la dérivabilité de f. En déduire le sens de variation de f.
- c) Etudier la parité de f.
- d) A l'aide d'un encadrement, déterminer la limite de f en $+\infty$. En déduire $\lim f(x)$.
- 5) Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in]0;1[$, $\int_0^x \frac{1-t^n}{1-t} dt = \sum_{k=1}^n \frac{x^k}{k}$. (D'après HEC 2005)

INTÉGRALES GÉNÉRALISÉES

EXERCICE 2 : Etudier la convergence des intégrales suivantes.

$$1) \int_{1}^{+\infty} \frac{2}{3x^{2}+1} dx \ 2) \int_{1}^{+\infty} \ln \left(1+\frac{1}{x^{2}}\right) dx \qquad \qquad 3) \int_{0}^{+\infty} \frac{\left(-1\right)^{n} t}{\left(1+t^{2}\right)^{n}} dt, \ n \in \mathbb{N} \qquad 4) \int_{e}^{+\infty} \frac{dt}{\ln \left(t\right)} \quad 5) \int_{2}^{+\infty} \frac{dt}{t^{2} \ln \left(t\right)}. \quad 6) \int_{e}^{+\infty} \frac{dt}{\sqrt{t} \ln \left(t\right)}.$$

3)
$$\int_0^{+\infty} \frac{\left(-1\right)^n t}{\left(1+t^2\right)^n} dt, \ n \in \mathbb{N}$$

4)
$$\int_{c}^{+\infty} \frac{dt}{\ln(t)}$$
 5) $\int_{2}^{+\infty} \frac{dt}{t^2 \ln(t)}$. 6

7)
$$\int_{1}^{+\infty} \frac{dt}{t^2 - (\ln(t))^2}$$

$$8) \int_{2}^{+\infty} \frac{1}{t(\ln(t))^{2}} dt$$

7)
$$\int_{1}^{+\infty} \frac{dt}{t^{2} - (\ln(t))^{2}}$$
 8) $\int_{2}^{+\infty} \frac{1}{t(\ln(t))^{2}} dt$ 9) $\int_{0}^{1} \ln(t) dt$ (Hors programme) 10) $\int_{1}^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}}$ 11) $\int_{2}^{+\infty} \frac{dx}{x^{3} (\ln(x))^{5}}$

$$10) \int_{1}^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}}$$

$$11) \int_{2}^{+\infty} \frac{\mathrm{dx}}{\mathrm{x}^{3} \left(\ln(\mathrm{x})\right)^{5}}$$

12)
$$\int_0^{+\infty} \frac{t^2}{(1+t^2)^2} dt$$

13)
$$\int_{-\infty}^{+\infty} \frac{e^t}{\left(1+e^t\right)} dt$$

$$14) \, \int_0^{+\infty} t^3 e^{-t^2} dt$$

12)
$$\int_{0}^{+\infty} \frac{t^{2}}{\left(1+t^{2}\right)^{2}} dt$$
 13)
$$\int_{-\infty}^{+\infty} \frac{e^{t}}{\left(1+e^{t}\right)} dt$$
 14)
$$\int_{0}^{+\infty} t^{3} e^{-t^{2}} dt$$
 15) Calculer
$$I = \int_{1}^{+\infty} \frac{\left(t-1\right)^{n}}{t^{n+2}} dt \text{ avec } u = \frac{1}{t}$$
 .

EXERCICE 3 : Etudier les séries suivantes grâce à des intégrales.

$$1) \; \sum \frac{1}{n \, ln \big(n \big)}$$

$$2) \sum \frac{1}{n(\ln(n))^2}$$

EXERCICE 4:

Soit f définie sur]0;+ ∞ [par f(x) = ln $\left(\frac{e^x - 1}{e^x + 1}\right)$.

1) Exprimer la dérivée de f sur $]0;+\infty[$.

2) En déduire la convergence puis la valeur de l'intégrale $\int_1^{+\infty} \frac{1}{e^x - e^{-x}} dx$. (On montrera que $\frac{1}{e^x - e^{-x}} = \frac{1}{2} f'(x)$)

EXERCICES DE SYNTHÈSE OU DE TYPE CONCOURS:

EXERCICE 5: D'APRÈS ESSEC

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^x}{\left(1 + e^x\right)^2}$.

1) Etudier la parité de f.

2) a) Donner une primitive de f sur \mathbb{R} .

b) Justifier la convergence de l'intégrale $\int_0^{+\infty} \frac{e^x}{\left(1+e^x\right)^2} dx$ et préciser sa valeur.

3) a) Déterminer un équivalent simple de $\frac{x^3e^x}{\left(1+e^x\right)^2}$ au voisinage de $+\infty$. En déduire que $\frac{xe^x}{\left(1+e^x\right)^2}$ est négligeable devant $\frac{1}{x^2}$ au

voisinage de $+\infty$.

b) Justifier alors l'existence de l'intégrale $\int_0^{+\infty}\!\frac{xe^x}{\left(1+e^x\right)^2}dx$.

c) En déduire la convergence de l'intégrale $\int_{-\infty}^{+\infty} \frac{xe^x}{\left(1+e^x\right)^2} dx$ et donner sa valeur.

4) Démontrer, à l'aide d'une intégration par parties, que $\int_0^{+\infty} \frac{xe^x}{\left(1+e^x\right)^2} dx = \ln(2)$.

EXERCICE 6:

1) a) Justifier que l'on a : $\frac{\left(\ln(t)\right)^n}{t^3} = 0 \left(\frac{1}{t^2}\right).$

b) En déduire la convergence de l'intégrale $~I_{_{1}}=\int_{_{1}}^{_{_{+}\infty}}\!\frac{\left(ln\left(t\right)\right)^{n}}{t^{3}}dt$.

2) a) Calculer I₀.

b) Trouver une relation entre $\boldsymbol{I}_{n+1}\,$ et $\,\boldsymbol{I}_{n}\,$.

c) En déduire une expression de I_n en fonction de n.

EXERCICE 7: D'APRÈS ESCP Intégrale gamma

1) a) Montrer que, pour tout entier naturel n, l'intégrale $\int_{0}^{+\infty} t^{n} e^{-t} dt$, notée I_{n} , converge.

2) a) Calculer I₀.

b) Pour tout entier naturel n, trouver une relation entre I_{n+1} et I_n .

c) En déduire I_n en fonction de n, pour tout entier naturel n.

3) Utiliser un changement de variable pour calculer la valeur de l'intégrale $J_n = \int_0^{+\infty} t^n e^{-2t} dt$.

EXERCICE 8: D'APRÈS EDHEC

Soit la fonction f définie sur]0; + ∞ [par f (x) = $\frac{e^{\frac{1}{x}}}{x^2}$.

- 1) a) Pour tout entier naturel n non nul, montrer que l'intégrale $\int_{n}^{+\infty} f(x) dx$, notée I_n , converge et exprimer I_n en fonction de n.
- b) En déduire un équivalent de $I_{\scriptscriptstyle n}$ lorsque n tend vers $+\infty$.
- 2) Montrer que la série de terme général $u_k = f(k)$ converge.
- 3) a) Etablir que, pour tout entier k supérieur ou égal à 1, on a : $f\left(k+1\right) \leq \int_{k}^{k+1} f\left(t\right) dt \leq f\left(k\right) \; .$
- b) En déduire que, pour tout entier n non nul, on a : $\sum_{k=n+1}^{+\infty} u_k \leq I_n \leq \sum_{k=n+1}^{+\infty} u_k + \frac{e^{\frac{1}{n}}}{n^2} \ .$
- c) En déduire un équivalent simple de $\sum_{k=n+1}^{+\infty}\frac{e^{\frac{1}{k}}}{k^2}$ quand n tend vers $+\infty$.

EXERCICE 9: D'APRÈS HEC

Pour tout réel a strictement positif, et tout entier naturel n, on pose : $I_n(a) = \int_0^{+\infty} e^{-at} (1 - e^{-t})^n dt$

- 1) Justifier la convergence de l'intégrale définissant I_n (a).
- 2) a) Montrer que $I_n(1) = \frac{1}{n+1}$.
- b) En déduire que, pour tout réel a supérieur ou égal à 1, $\lim_{n\to +\infty} I_n\left(a\right)=0$.
- 3) a) Montrer que pour tout réel a strictement positif, et tout entier naturel n, on a : $(n+1)(I_n(a)-I_{n+1}(a))=aI_{n+1}(a)$.
- b) En déduire une expression de $I_{n+1}(a)$ en fonction de $I_n(a)$.

EXERCICE 10: D'APRÈS EDHEC

Pour tout entier naturel n, on pose $u_n = \int_0^1 \frac{dt}{1+t+t^n}$ avec $u_0 = \int_0^1 \frac{dt}{2+t}$.

- 1) Justifier l'existence de l'intégrale définissant $\mathbf{u}_{_{\mathrm{n}}}$.
- 2) Calculer \mathbf{u}_0 et \mathbf{u}_1 .
- 3) a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- b) Montrer que, pour tout entier naturel n, on a : $u_n \le \ln(2)$.
- c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- 4) a) Pour tout entier naturel n, écrire $ln(2) u_n$ sous forme d'une intégrale.
- b) En déduire que, pour tout entier naturel n, on a : $\ln(2) u_n \le \frac{1}{n+1}$.
- c) Donner la limite de la suite $(u_n)_{n\in\mathbb{N}}$.
- 5) Pour tout entier naturel n supérieur ou égal à 2, on pose $v_n = \int_1^{+\infty} \frac{dt}{1+t+t^n}$.
- a) Justifier la convergence de l'intégrale définissant v_n.
- b) Montrer que pour tout entier n supérieur ou égal à 2, on a : $0 \le v_n \le \frac{1}{n-1}$.
- c) En déduire la limite de la suite $(v_n)_{n\geq 2}$ puis donner la valeur de $\lim_{n\to +\infty} \int_0^{+\infty} \frac{dt}{1+t+t^n}$.

EXERCICE 11: D'APRÈS HEC BL 2013

Soit f une fonction définie et dérivable sur \mathbb{R} , à valeurs dans \mathbb{R} , vérifiant f(0) = 0 et, pour tout réel $x : f'(x) = e^{-xf(x)}$.(*) On suppose que cette fonction est unique et on ne cherchera pas à la déterminer.

- 1) Pour tout réel x, on pose : g(x) = f(x) + f(-x), $h(x) = (g(x))^2$ et $\phi(x) = f(x) x$;
- a) On note g' la fonction dérivée de g. Montrer que, pour tout réel x, g'(x) est du même signe que -xg(x).
- b) Etudier les variations de h. En déduire que h est constante sur $\mathbb R$.
- c) En déduire que la fonction f est impaire.
- d) On note φ' et φ'' les dérivées première et seconde de la fonction φ ; après avoir justifié leur existence, déterminer le signe de $\varphi''(x)$ pour tout réel positif. En déduire que pour tout réel x, f(x) = x implique x = 0.
- 2) Variation de f.
- a) Montrer que l'intégrale $I = \int_0^{+\infty} e^{-xf(x)} dx$ est convergente.
- b) A l'aide de la relation (*), en déduire que f possède une limite finie en $+\infty$. On pose désormais $\lambda = \lim_{x \to \infty} f(x)$.
- c) Dresser le tableau de variation de f sur $\mathbb R$.
- 3) Démonstration d'inégalités :
- a) Etablir, pour tout réel $x \ge 0$, l'inégalité suivante : $\int_0^x e^{-tf(t)} dt \ge \int_0^x e^{-\lambda t} dt$.
- b) En déduire que pour tout réel x positif : $f(x) \ge \frac{1}{\lambda} (1 e^{-\lambda x})$.
- c) Montrer que $\lambda \ge 1$.
- 4) Encadrement de la limite de f en $+\infty$:
- a) Soit a un réel strictement positif ; établir, pour tout réel $x \in [a; +\infty[$, l'inégalité suivante : $f(x) f(a) \le \int_a^x e^{-tf(a)} dt$.
- b) En déduire que, pour tout réel $x \in [a; +\infty[$, on $a : f(x) \le f(a) + \frac{e^{-af(a)}}{f(a)}$.
- c) On suppose que $\lambda > 1$. Etablir l'existence d'un unique réel a > 0 tel que f(a) = 1.
- d) En déduire que $\lambda < 2$.
- 5) Etude d'une suite :

Soit b un réel strictement positif et (x_n) une suite définie par : $\begin{cases} x_0 = b \\ \forall n \in \mathbb{N}, \ x_{n+1} = f(x_n) \end{cases}$

- a) Montrer que la suite (x_n) est strictement positive et décroissante.
- b) En déduire qu'elle est convergente : soit L sa limite.
- c) Déterminer la valeur de L.
- d) Etablir l'encadrement suivant : $\forall n \in \mathbb{N}, \frac{1}{\lambda} (1 e^{-\lambda x_n}) \leq x_{n+1} \leq x_n$.
- e) Montrer finalement que $x_{_{n+1}}\,$ est équivalent à $\,x_{_{n}}\,$ lorsque n tend vers $\,+\infty$.